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Background: Model Inversion (MI) Attack
● Goal: Given the access to a model, recover private training data associated 

with some target label
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○ Blackbox: the attacker can only query the model
○ Whitebox: the attacker has the access to the model parameters
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Background: Attack Algorithms
● Attacks on different models: Linear regression [FLJLPR14], decision tree, and 

neural networks [FJR15, YCL19, SBBFZ20, ZJPWLS20]

● Able to recover sensitive attributes for not only training data but also test 
data drawn independently from domain distribution.

● Common algorithm: Output the feature that is mostly likely to produce the 
target label under the target network, i.e. computing MLE                  
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Prior Work on Defending MI Attacks
● Differential Privacy (DP)

○ Observed through empirical studies that DP cannot provide protection against MI attacks with 
reasonable model utility [FLJLPR14, ZJPWLS20].

○ Our paper presents a theoretical analysis that explains the inefficacy of DP. 

Our defense is model agnostic and effective for both blackbox and 
whitebox settings. 

● Model Specific Defenses
○ Decision tree: place sensitive features at a particular depth [FJR15].
○ DNN (black-box): injecting uniform noise to confidence scores [SBBFZ20], reducing their 

precision [FJR15] or dispersion [YCL19].
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Our Defense Goal
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● Both the recovery of training images and test images would incur privacy loss 
to the target identity.  

● Design an algorithm to protect the training data distribution, instead of just 
training data set.

Face recognition example

Training Image Test Image
Both reveals the guy’s face 
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MID: Mutual Information Regularization based Defense 
● Intuition: if the output distribution                is independent from X, the attacker 

cannot learn anything about X’s distribution. 
● Method: Regularize the loss function by the mutual information between 

model’s input and output distribution. 
○ The mutual information is a measure of the mutual dependence between the two variables.

Original Loss Function mutual information between input 
and prediction

Regularizer 
Coefficient

● Challenge: mutual information is computationally expensive. 6



Instantiation of MID
● Linear regression: Taylor-expansion based approximation 
● Decision tree: modify ID3 
● Deep Neural Networks: information bottleneck technique [AFDM16, ST17]

By data processing inequality, 
we have

new training loss

label       feature stochastic encoding
of intermediate layer

prediction

○ Regard the neural network as a Markov chain
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Formalization of MI attack
● We formalize the MI attacks and quantify its distributional privacy loss.
● First attempt of modeling the privacy loss of members in the population.

Server Adversary

The adversary wins if the guess for       is correct.
MI Privacy loss = privacy of adversary winning

Adversary’s guess 
of sensitive feature

Model Non-sensitive feature    Label

Sensitive feature, 
e.g. shape and color 
of face 8



Characterizing MI privacy loss of DP models

Several earlier empirical studies suggest that DP is not able to defend against model inversion attack with 
any reasonable model performance [FLJLPR14, ZJPWLS20]!
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Characterizing MI privacy loss of DP models
● Main result: when the learning algorithm is (ε, δ)-differentially private, the MI 

privacy loss is tightly upper bounded by                                .
○ n: number of training data
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To make this bound small, the privacy budget ε needs to be set as o(1 / #training data)!



Evaluation: Baselines
● Attack algorithms: 

○ MAP [FLJLPR14, FJR15] // Black+white-box
○ Knowledge Alignment [YCL19] // Black-box
○ Update Leaks [SBBFZ20] // Black-box
○ GMI [ZJPWLS20] // White-box

● Defense baseline: 
○ Differential Privacy
○ Set priority depth of sensitive attributes for decision tree 
○ Noisy confidence scores for black-box DNNs
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Evaluation: Metrics
● Evaluate the performance of a defense mechanism in terms of the 

privacy-utility tradeoff.

Accuracy

Calibration 12

Attack 
Performance

Model Utility
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Defense results for blackbox MI attacks
MAP on decision tree

Knowledge Alignment Update-Leaks

MAP on linear regression

● The more predictive power the 
model has, the more vulnerable 
it is to the attacks.

● Our defense can significantly 
improve the model robustness 
for any fixed model 
performance.  
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Model Calibration
Update LeaksKnowledge Alignment
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Expected Calibration Error (ECE) measures the mismatch between the model accuracy and 
confidence. 

● Important for evaluating a risk model. 



Defense results for whitebox MI attacks
GMI

MAP with 
white-box 
counts
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Future Work
● Defending MI Attacks with computational security.
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Thank you!

Contact: tianhaowang@fas.harvard.edu
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