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Abstract

We initiate a study of the composition properties of interactive differentially private mechanisms. An interactive
differentially private mechanism is an algorithm that allows an analyst to adaptively ask queries about a sensitive
dataset, with the property that an adversarial analyst’s view of the interaction is approximately the same regardless
of whether or not any individual’s data is in the dataset. Previous studies of composition of differential privacy
have focused on non-interactive algorithms, but interactive mechanisms are needed to capture many of the intended
applications of differential privacy and a number of the important differentially private primitives. We focus on
concurrent composition, where an adversary can arbitrarily interleave its queries to several differentially private
mechanisms, which may be feasible when differentially private query systems are deployed in practice. We prove
that when the interactive mechanisms being composed are pure differentially private, their concurrent composition
achieves privacy parameters (with respect to pure or approximate differential privacy) that match the (optimal)
composition theorem for noninteractive differential privacy. We also prove a composition theorem for interactive
mechanisms that satisfy approximate differential privacy. That bound is weaker than even the basic (suboptimal)
composition theorem for noninteractive differential privacy, and we leave closing the gap as a direction for future
research, along with understanding concurrent composition for other variants of differential privacy.

1. Introduction
1.1. Composition of Differential Privacy

A crucial property of differential privacy is its behavior under composition. If we run multiple distinct differentially private
algorithms on the same dataset, the resulting composed algorithm is also differentially private, with some degradation in the
privacy parameters (ε, δ). This property is especially important and useful since in practice we rarely want to release only a
single statistic about a dataset. Releasing many statistics may require running multiple differentially private algorithms on
the same database. Composition is also a very useful tool in algorithm design. In many cases, new differentially private
algorithms are created by combining several simpler algorithms. The composition theorems help us analyze the privacy
properties of algorithms designed in this way.

Formally, let M0,M1, . . . ,Mk−1 be differentially private mechanisms, we define the composition of these mecha-
nisms by independently executing them. Specifically, we define M = Comp(M0,M1, . . . ,Mk−1) as M(x) =
(M0(x), . . . ,Mk−1(x)) where each Mi is run with independent coin tosses. For example, this is how we might ob-
tain a mechanism answering a k-tuple of queries.

A handful of composition theorems already exist in the literature. The Basic Composition Theorem (Dwork et al., 2006) says
that the privacy degrades at most linearly with the number of mechanisms executed. However, if we are willing to tolerate an
increase in the δ term, we obtain the Advanced Composition Theorem (Dwork et al., 2010) where the privacy parameter ε
only needs to degrade proportionally to the square root of number of mechanisms executed. Despite giving an asymptotically
correct upper bound for the global privacy parameter, the Advanced Composition Theorem is not exact. Kairouz, Oh, and
Viswanath (Kairouz et al., 2015) shows how to compute the optimal bound for composing k mechanisms where all of them
are (ε, δ)-differentially private. Murtagh and Vadhan (Murtagh & Vadhan, 2016) further extends the optimal composition
for the more general case where the privacy parameters may differ for each algorithm in the composition.
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1.2. Interactive Differential Privacy

The standard treatment of differential privacy refers to a noninteractive algorithmM that takes a dataset x as input and
produces a statistical releaseM(x). However, in many of the motivating applications of differential privacy, we don’t want
to perform all of our releases in one shot, but rather allow analysts to make adaptive queries to a dataset. Thus, we should
view the mechanismM as a party in a two-party protocol, interacting with a (possibly adversarial) analyst.

To formalize the concept of interactive DP, we recall one of the standard formalizations of an interactive protocol between
two parties A and B. We do this by viewing each party as a function, taking its private input x, all messages it has received
(m0,m1, . . . , ), and the party’s random coins r, to the party’s next message to be sent out. Based on that, we define the view
of a party in an interactive protocol to capture everything the party “sees” during the execution:

Definition 1 (View of a party in an interactive protocol). Let (A,B) be an interactive protocol. Let rA and rB be the random
coins for A and B, respectively. A’s view of (A(xA; rA), B(xB ; rB)) is the tuple ViewA〈A(xA; rA), B(xB ; rB)〉 =
(rA, xA,m0,m1, . . .) consisting of all the messages received by A in the execution of the protocol together with the private
input xA and random coins rA. If we drop the random coins rA and/or rB , ViewA〈A(xA), B(xB)〉 becomes a random
variable. B’s view of (A(xA), B(xB)) is defined symmetrically.

In our case, A is the adversary and B is the mechanism whose input is usually a database x. Since A does not have an input
in our case, we will denote the interactive protocol as (A,B(x)) for the ease of notation. Since we will only be interested in
A’s view and A does not have an input, we will drop the subscript and write A’s view as View〈A,B(x)〉.

Now we are ready to define the interactive differential privacy as a type of interactive protocol between an adversary (without
any computational limitations) and an interactive mechanism of special properties.

Definition 2 (Interactive Differential Privacy). A randomized algorithmM is an (ε, δ)-differentially private interactive
mechanism if for every pair of adjacent datasets x, x′ ∈ MultiSets(X ), for every adversary algorithmA we have: we have

∀T ⊆ Range (View〈A,M(·)〉) ,Pr [View〈A,M(x)〉 ∈ T ] ≤ eε Pr [View〈A,M(x′)〉 ∈ T ] + δ (1)

where the randomness is over the coin flips of both the algorithmM and the adversary A.

In addition to being the “right” modelling for many applications of differential privacy, interactive differential privacy also
captures the full power of fundamental DP mechanisms such as the Sparse Vector Technique (Dwork et al., 2009; Roth &
Roughgarden, 2010) and Private Multiplicative Weights (Hardt & Rothblum, 2010), which are in turn useful in the design
of other DP algorithms (which can use these mechanisms as subroutines and issue adaptive queries to them). Interactive
DP was also chosen as the basic abstraction in the programming framework for the new open-source software project
OpenDP (Gaboardi et al., 2020), which was our motivation for this research.

Despite being such a natural and useful notion, interactive DP has not been systematically studied before. It has been
implicitly studied in the context of distributed forms of DP, starting with (Beimel et al., 2008), where the sensitive dataset is
split amongst several parties, who execute a multiparty protocol to estimate a joint function of their data, while each party
ensures that their portion of the dataset has the protections of DP against the other parties. Indeed, in an m-party protocol,
requiring DP against malicious coalitions of size m− 1 is equivalent to requiring that each party’s strategy is an interactive
DP mechanism in the sense of Definition 2. An extreme case of this is the local model of DP, where each party holds a single
data item in X representing data about themselves (Kasiviswanathan et al., 2011). There been extensive research about the
power of interactivity in local DP; see (Chen et al., 2020) and the references therein. In contrast to these distributed models,
in Definition 2 we are concerned with the centralized DP scenario where only one party (M) holds sensitive data, and how
an adversarial data analyst (A) may exploit adaptive queries to extract information about the data subjects.

1.3. Our Contributions.

In this paper, we initiate a study of the composition of interactive DP mechanisms. Like in the context of cryptographic
protocols, there are several different forms of composition we can consider. The simplest is sequential composition, where
all of the queries toMi−1 must be completed before any queries are issued toMi. It is straightforward to extend the proofs
of the noninteractive DP composition theorems to handle sequential composition of interactive DP mechanisms.

Thus, we turn to concurrent composition, where an adversary can arbitrarily interleave its queries to the k mechanisms.
Although the mechanisms use independent randomness, the adversary may create correlations between the executions



Concurrent Composition of Differential Privacy

by coordinating its actions; in particular, its queries in one execution may also depend on messages it received in other
executions. Concurrent composability is important for the deployment of interactive DP in practice, as one or more
organizations may set up multiple DP query systems on datasets that refer to some of the same individuals, and we would not
want the privacy of those individuals to be violated by an adversary that can concurrently access those systems. Concurrent
composability may also be useful in the design of DP algorithms; for example, one might design a DP machine learning
algorithm that uses adaptive and interleaved queries to two instantiations of an interactive DP mechanism like the Sparse
Vector Technique (Dwork et al., 2009; Roth & Roughgarden, 2010).

Our findings is summarized as follows:

• We prove a composition theorem for interactive mechanisms that satisfy approximate differential privacy, where the
bound for δ is weaker than the basic composition theorem for noninteractive differential privacy.

• We prove that when the interactive mechanisms being composed are pure differentially private, their concurrent
composition achieves privacy parameters (with respect to pure or approximate differential privacy) that match the
(optimal) composition theorem for noninteractive differential privacy.
• Based on computer experiments, we conjecture that the Optimal Composition Theorems can be extended to the concurrent

composition of approximate DP mechanisms. We leave closing the gap as a direction for future research, along with
understanding concurrent composition for other variants of differential privacy.

2. Basic Composition Theorem for Concurrent Composition
We use ConComp(M0, . . . ,Mk−1) to denote the concurrent composition of interactive mechanismsM0, . . . ,Mk−1.
(See full version of paper for a formal definition.) Our first result is roughly an analogue of the Basic Composition Theorem.
Theorem 1. If interactive mechanismsM0, . . . ,Mk−1 are each (ε, δ)-differentially private, then their concurrent compo-

sition ConComp(M0, . . . ,Mk−1) is
(
k · ε, e

kε−1
eε−1 · δ

)
-differentially private.

More generally, if interactive mechanism Mi is (εi, δi)-differentially private for i = 0, . . . , k − 1, then
ConComp(M0, . . . ,Mk−1) is (εg, δg)-differentially private where εg =

∑k−1
i=0 εi, and δg =

∑k−1
i=0 e

∑i−1
j=0 εj · δi.

Just like in the Basic Composition Theorem for noninteractive DP, the privacy-loss parameters εi just sum up. However,
the bound on δg is worse by a factor of at most eεg . In the typical setting where we want to enforce a global privacy loss
of εg = O(1), this is only a constant-factor loss compared to the Basic Composition Theorem, but that constant can be
important in practice. Note that expression for δg depends on the ordering of the k mechanismsM0, . . . ,Mk−1, so one
can optimize it further by taking a permutation of the mechanisms that minimizes δg. The proof is by a standard hybrid
argument, which is detailed in the full version of the paper. We note that the proof is very similar to the proof of the group
privacy property of (noninteractive) differential privacy, where (ε, δ)-DP for datasets that differ on one record implies(
k · ε, e

kε−1
eε−1 · δ

)
for datasets that differ on k records.

3. Advanced Composition Theorem for Pure Concurrent Composition
Next we show that the Advanced and Optimal Composition Theorems for noninteractive DP can be extend to interactive DP,
provided that the mechanismsMi being composed satisfy pure DP (i.e. δi = 0). Note that the final composed mechanism
ConComp(M0, . . . ,Mk−1) can be approximate DP, by taking δg = δ′ > 0, and thereby allowing for a privacy loss εg
that grows linearly in

√
k rather than k.

We do this by extending the main proof technique of (Kairouz et al., 2015; Murtagh & Vadhan, 2016) to interactive DP
mechanisms. Specifically, we reduce the analysis of interactive (ε, 0)-DP mechanisms to that of analyzing the following
simple “randomized response” mechanism:
Definition 3 ((Kairouz et al., 2015)). For ε > 0, δ ∈ [0, 1], define a randomized noninteractive algorithm RR(ε,δ) :
{0, 1} → {0, 1,‘Iam0’,‘Iam1’} as follows:

Pr
[
RR(ε,δ)(0) = ‘Iam0’

]
= δ Pr

[
RR(ε,δ)(1) = ‘Iam0’

]
= 0

Pr
[
RR(ε,δ)(0) = 0

]
= (1− δ) · eε

1+eε Pr
[
RR(ε,δ)(1) = 0

]
= (1− δ) · 1

1+eε

Pr
[
RR(ε,δ)(0) = 1

]
= (1− δ) · 1

1+eε Pr
[
RR(ε,δ)(1) = 1

]
= (1− δ) · eε

1+eε

Pr
[
RR(ε,δ)(0) = ‘Iam1’

]
= 0 Pr

[
RR(ε,δ)(1) = ‘Iam1’

]
= δ
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Note that RR(ε,δ) is a noninteractive (ε, δ)-DP mechanism. For simplicity, when δ = 0, we denote the mechanism as RRε.
We show that every interactive (ε, 0)-DP mechanism can be, in some sense, simulated from RRε:

Theorem 2. Suppose thatM is an interactive (ε, 0)-differentially private mechanism. Then for every pair of adjacent
datasets x0, x1 there exists an interactive mechanism T s.t. for every adversary A and every b ∈ {0, 1} we have

View(A,M(xb)) ≡ View(A, T (RRε(b)))

Here T is an interactive mechanism that depends onM as well as a fixed pair of adjacent datasets x0 and x1. It receives
a single bit as an output of RRε(b), and then interacts with the adversary A just like M would. Kairouz, Oh, and
Viswanath (Kairouz et al., 2015) proved Theorem 2 result for the case thatM and T are noninteractive. The interactive case
is more involved because we need a single T that works for all adversary strategies A. (If we allow T to depend on the
adversary strategy A, then the result would readily follow from that of (Kairouz et al., 2015), but this would not suffice for
our application to concurrent composition.)

Given the Theorem 2, to analyze ConComp(M0(xb), . . . ,Mk−1(xb)) on b = 0 vs. b = 1, it suffices to analyze
ConComp(T0(RRε0(b)), . . . , Tk−1(RRεk−1

(b))). An adversary’s view interacting with the latter concurrent composition
can be simulated entirely from the output of Comp(RRε0(b), . . . ,RRεk−1

(b)), which is the composition of entirely
noninteractive mechanisms. Thus, we conclude:

Corollary 3. The Advanced and Optimal Composition Theorems extend to the concurrent composition of (εi, δi)-interactive
DP mechanismsMi provided that δ0 = δ1 = · · · = δk−1 = 0.

4. Future Work
In the full version of the paper, we present empirical evidence for our conjecture that the Optimal Composition Theorems
can be extended to the concurrent composition of approximate DP mechanisms. Specifically, we experimentally evaluate the
conjecture for 3-message interactive mechanisms with 1-bit messages, and we test whether instantiations of this 2-round
interactive mechanism that are (ε, δ)-DP can be simulated as the interactive post-processing of randomized response RR(ε,δ).
In all of our trials, we find a feasible interactive post-processing algorithm. The implementation details of the experiment
can be found in the full version of the paper. Based on the above findings, we conjecture that the concurrent composition of
interactive DP mechanisms may still have the same bound as the composition for noninteractive DP mechanisms. Besides,
we might be able to prove it through a similar construction of interactive post-processing mechanisms as we did in Theorem
2. This means that every interactive DP mechanisms can be reduced to noninteractive randomized response. We leave the
resolution of these conjectures for future work.

Another interesting question for future work is analyzing concurrent composition for variants of differential privacy, such
as Concentrated DP (Dwork & Rothblum, 2016; Bun & Steinke, 2016; Bun et al., 2018), Rényi DP (Mironov, 2017), and
Gaussian DP (Dong et al., 2019). Some of these notions require bounds on Rényi divergences, e.g. that

Dα(View〈A,M(x)〉||View〈A,M(x′)〉) ≤ ρ,

for adjacent datasets x, x′ and certain pairs (α, ρ). Here sequential composition can be argued using a chain rule for Rényi
divergence:

Dα((Y, Z)||(Y ′, Z ′)) ≤ Dα(Y ||Y ′) + sup
y
Dα(Z|Y=y||Z ′|Y ′=y). (2)

Taking Y to be the view of the analyst interacting withM0(x), Z to be the view of the analyst in a subsequent interaction
withM1(x), and Y ′ and Z ′ to be analogously defined with respect to an adjacent dataset x′, we obtain the usual composition
bound of ρ0 + ρ1 on the overall Rényi divergence of order α, where ρ0 and ρ1 are the privacy-loss parameters of the
individual mechanisms. However, this argument fails for concurrent DP, since we can no longer assert the privacy properties
ofM1 conditioned on any possible value y of the adversary’s view of the interaction withM0. Unfortunately, the Chain
Rule (2) does not hold if we replace the supremum with an expectation, so a new proof strategy is needed (if the composition
theorem remains true).
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