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TL; DR: we propose to boost the efficiency in computing cooperative game theory-based data value

notions by learning to estimate the performance of a learning algorithm on unseen data combinations.

Background: Data Valuation Boosting Sampling-based Heuristics via Utility Function Learning Evaluation
e Goal: quantify the contribution of each training data point to a learning task.

e Example of Applications: inform the implementation of policies; filter out poor

quality data and identify data sources that are important to collect in the future.
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