

Concurrent Composition of Differential Privacy

Salil Vadhan, Tianhao Wang Harvard University

TL: DR: We initiate a study of the *concurrent* composition properties of *interactive* differentially private mechanisms, and derived the *optimal* composition bound for pure interactive DP mechanisms.

View of a Party

Background: DP under Composition

- Goal: analyze the privacy loss under the composition of multiple different DP mechanisms on the same dataset.
- Examples of existing DP composition theorems: Basic Composition. Advanced Composition, Optimal Composition, Moment Accountant, etc.

Motivation

- Existing composition theorems: assume that the underlying DP mechanisms are "one-shot" algorithms.
- We want to compose interactive mechanisms, e.g., Sparse Vector Technique (SVT).

Interactive DP under Composition

- · There could be more than one composition operations for interactive mechanisms
- Sequential Composition: all of the queries to the current mechanism must be completed before the session with another mechanism can be spawned.

Concurrent Composition: multiple interactions can be spawned and be executed simultaneously, queries to the mechanisms can be arbitrarily interleaved with each other.

5	еx		HIV?							1VIH	boold	Sex
	F	8	Y		· · · ·					Y	-8	4
<	8	A	Y	6	9,	1	- 2	2		Y		-
	N	0	N	- C	- <u>*</u> +	11. 22	+ <u>+</u>	J.	_	и	0	м
	w.	0	¥		÷.					¥	0	м
	,	A	 N		-		-			м	 A	1
	w.	8	 ¥	curator		adversary		curator		Y	 8	м

Unfortunately, none of the existing composition theorems for non-interactive DP can be directly applied to the setting of concurrent compositions.

References

Kairouz, P., Oh, S., & Viswanath, P. (2015, June). The composition theorem for differential privacy. In International conference on machine learning (pp. 1376-1385), PMLR.

Murtagh, J., & Vadhan, S. (2016, January), The complexity of computing the optimal composition of differential privacy. In Theory of Cryptography Conference (pp. 157-175), Springer, Berlin, Heidelberg,

Interactive Protocol

- Interactive protocol between two parties A and B Viewing each party as a potentially randomized function
 - (private input, received messages, random coins) => Next message to be sent out.

Formalizing Interactive Differential Privacy

The interactive differentially privacy as a type of interactive protocol between an adversary (without any computational limitations) and an interactive mechanism of special properties.

Definition 4 (Interactive Differential Privacy). A randomized algorithm \mathcal{M} is (ε, δ) -differentially

private interactive mechanism if for every pair of adjacent datasets x, x', for every adversary algorithm

 \mathcal{A} , for every possible output set $T \subseteq \text{Range}(View(\mathcal{A}, \mathcal{M}(\cdot)))$ we have

 $\Pr\left[\text{View}\langle\mathcal{A},\mathcal{M}(x)\rangle\in T\right]\leq e^{\varepsilon}\Pr\left[\text{View}\langle\mathcal{A},\mathcal{M}(x')\rangle\in T\right]+\delta$

Group Privacy-like Bound for Concurrent Composition

Result: The concurrent composition of k (ϵ, δ) interactive DP mechanisms has a group privacy-like bound ($k\epsilon, ke^{k\epsilon}\delta$).

<u>Proof Idea</u>: Suppose interactive mechanisms $M_0, ..., M_{\{k-1\}}$ are each (ϵ_i, δ_i) -differentially private. View A and $M_0, \dots, M_{\{i-1\}}, M_{\{i+1\}}, \dots, M_{\{k-1\}}$ as a combined adversary A^* , we can show that

 $\Pr\left[\operatorname{View}(\mathcal{A}, \operatorname{ConComp}(\mathcal{M}_0(x'), \dots, \mathcal{M}_{i-1}(x'), \mathcal{M}_i(x), \dots, \mathcal{M}_{k-1}(x))) \in S\right]$

 $\leq e^{\varepsilon_i} \Pr\left[\operatorname{View}(\mathcal{A}, \operatorname{ConComp}(\mathcal{M}_0(x'), \dots, \mathcal{M}_{i-1}(x'), \mathcal{M}_i(x'), \dots, \mathcal{M}_{k-1}(x))) \in S\right] + \delta_i$

which can be used for constructing a hybrid argument.

Optimal Concurrent Composition Bound for Pure DP

Result: Every interactive $(\varepsilon, 0)$ –DP mechanisms can be simulated by the postprocessing of randomized response $RR_{(\varepsilon,0)}$ (a non-interactive mechanism). => Optimal (approx. DP, Renyi DP, f-DP, etc) bounds for concurrent composition of interactive pure DP mechanisms = optimal bounds for composition of non-interactive pure DP mechanisms.

(ε, δ)-DP version of Randomized Response:

 $\operatorname{RR}_{(\varepsilon,\delta)}: \{0,1\} \rightarrow \{0,1, \operatorname{`Iam0'}, \operatorname{`Iam1'}\}$

- Post-processing preserves differential privacy => To analyze the concurrent composition of arbitrary pure interactive DP mechanisms, it suffices to analyze the composition of randomized responses of the same parameters (analogue to the proof strategy in [KOV15] and [MV16]).
- Therefore, the optimal bound for concurrent composition of pure interactive DP is the same as the optimal bound for composing non-interactive counterpart.

Future Work

- We empirically test whether the Optimal Composition Theorems can be extended to the concurrent composition of approximate DP for 3-message interactive mechanisms with 1-bit message. In all our trials, we find a feasible interactive postprocessing algorithm.
- We therefore conjecture that the concurrent composition of interactive DP • mechanisms may still have the same bound as the composition for non-interactive DP.

- dataset x
- Since we will only be interested in the adversary's view and the adversary does not have an input, we will drop the subscript and write A's view as View(A, B(x))