Salil Vadhan, Tianhao Wang

Harvard University

TL; DR: We initiate a study of the concurrent composition properties of interactive differentially private mechanisms, and derived the optimal composition bound for pure interactive DP mechanisms.

Background: DP under Composition

- Goal: analyze the privacy loss under the composition of multiple different DF
. mechanisms on the same dataset.
- Examples of existing DP composition theorems: Basic Composition Advanced Composition, Optimal Composition, Moment Accountant, etc.

Motivation

- Existing composition theorems: assume that the underlying DP mechanisms
are "one-shot" algorithms.
- We want to compose interactive mechanisms, e.g., Sparse Vector Technique
(SVT).

Interactive DP under Composition

- There could be more than one composition operations for interactive
- Sequential Composition: all of the queries to the current mechanism mus be completed before the session with another mechanism can be spawned.

- Concurrent Composition: multiple interactions can be spawned and be xecuted simultaneously, queries to the mechanisms can be arbitrarily interleaved with each other.

- Unfortunately, none of the existing composition theorems for non-interactive DP can be directly applied to the setting of concurrent compositions.

References

Kairouz, P., Oh, S., \& Viswanath, P. (2015, June). The composition theorem for Kairouz, P., Oh, S., \& Viswanath, P. (2015, June). The composition theorem for
differential privacy. In International conference on machine learning (pp. 1376-
1385). PMLR.

Murtagh, J., \& Vadhan, S. (2016, January). The complexity of computing the optimal composition of differential privacy. In Theory of Cryptography Conference (pp. 157-175). Springer, Berlin, Heidelberg.

```
Interactive Protocol
- Interactive protocol between two parties A and B
        Mewing (l)
        unction.
        (private input, received messages, random
        coins) => Next message to be sent out.
```


View of a Party

```
\(\operatorname{View}_{A}\left\langle A\left(x_{A}\right), B\left(x_{B}\right)\right\rangle=\left(r_{A}, x_{A}, m_{1}, m_{3}, \ldots\right)\) Randomness Piviate Input \(\begin{gathered}\text { received } \\ \text { messages }\end{gathered}\)
```


- Party A: adversary

```
- Party \(B\) is an interactive mechanism whose input is dataset \(x\).
Since we will only be interested in the adversary's view and the adversary does not have an input, we will drop the subscript and write A's view as View \(\langle A, B(x)\rangle\)
```


Formalizing Interactive Differential Privacy

```
The interactive differentially privacy as a type of interactive protocol between an adversary (without any computational limitations) and an interactive mechanism of special properties.
Definition 4 (Interactive Differential Privacy). A randomized algorithm \(\mathcal{M}\) is \((\varepsilon, \delta)\)-differentially private interactive mechanism if for every pair of adjacent datasets \(x, x^{\prime}\), for every adversary algorithm \(\mathcal{A}\), for every possible output set \(T \subseteq \operatorname{Range}(\operatorname{View}(\mathcal{A}, \mathcal{M}(\cdot)\rangle)\) we have
\[
\operatorname{Pr}[\operatorname{View}(\mathcal{A}, \mathcal{M}(x)\rangle \in T] \leq e^{\varepsilon} \operatorname{Pr}\left[\operatorname{View}\left\langle\mathcal{A}, \mathcal{M}\left(x^{\prime}\right)\right\rangle \in T\right]+\delta
\]
```

Group Privacy-like Bound for Concurrent Composition
Result: The concurrent composition of $k(\epsilon, \delta)$ interactive DP mechanisms has a group privacy-like bound ($k \varepsilon, k e e^{k \varepsilon} \delta$). Proof Idea: Suppose interactive mechanisms $M_{0}, \ldots, M_{\{k-1\}}$ are each $\left(\epsilon_{i}, \delta_{i}\right)$-differentially private. View A and $M_{0}, \ldots, M_{\{i-1}, M_{\{i+1)}, \ldots, M_{\{k-1\}}$ as a combined adversary A^{*}, we can show that
$\operatorname{Pr}\left[\operatorname{view}\left\langle\mathcal{A}, \operatorname{ConComp}\left(\mathcal{M}_{0}\left(x^{\prime}\right), \ldots, \mathcal{M}_{i-1}\left(x^{\prime}\right), \mathcal{M}_{i}(x), \ldots, \mathcal{M}_{k-1}(x)\right)\right\rangle \in S\right.$
$\leq e^{c_{i}} \operatorname{Pr}\left[\operatorname{View}\left(\mathcal{A}, \operatorname{ConComp}\left(\mathcal{M}_{0}\left(x^{\prime}\right), \ldots, \mathcal{M}_{i-1}\left(x^{\prime}\right), \mathcal{M}_{i}\left(x^{\prime}\right), \ldots, \mathcal{M}_{k-1}(x)\right)\right\} \in S\right]+\delta_{i}$
which can be used for constructing a hybrid argument.

Optimal Concurrent Composition Bound for Pure DP Besult: Every interactive ($\varepsilon, 0$) -DP mechanisms can be simulated by the post processing of randomized response $R R_{(\varepsilon, 0)}$ (a non-interactive mechanism). \Rightarrow Optimal (approx. DP, Renyi DP, f-DP, etc) bounds for concurrent composition of interactive pure DP mechanisms = optimal bounds for composition of non-interactive

- (ε, δ)-DP version of Randomized Response:
$\mathrm{RR}_{(\{, \delta)}:\{0,1\} \rightarrow\left\{0,1,{ }^{\prime}\right.$ Iam0', 'Iam1'\}
$\operatorname{Pr}\left[\mathrm{RR}_{(\varepsilon, \delta)}(0)={ }^{\prime}{ }^{\prime}\right.$ IamO $\left.{ }^{\prime}\right]=\delta \quad \operatorname{Pr}\left[\mathrm{RR}_{(\varepsilon, \delta)}(1)={ }^{\prime}\right.$ IamO $\left.O^{\prime}\right]=0$
$\operatorname{Pr}\left[\mathrm{RR}_{(\delta, \delta)}(0)=0\right]=(1-\delta) \cdot \frac{e^{\delta}}{1+\alpha^{\delta}} \operatorname{Pr}\left[\operatorname{RR}_{(\varepsilon, \delta)}(1)=0\right]=(1-\delta) \cdot \frac{1}{1+e^{\delta}}$ $\operatorname{Pr}\left[\mathrm{RR}_{(\varepsilon, \delta)}(0)=1\right]=(1-\delta) \cdot \frac{1}{1+\epsilon^{e}} \operatorname{Pr}\left[\mathrm{RR}_{(\epsilon, \delta)}(1)=1\right]=(1-\delta) \cdot \frac{e^{\varepsilon^{e}}}{1+e^{t}}$
$\operatorname{Pr}\left[\mathrm{RR}_{(\varepsilon, \delta)}(0)={ }^{\prime} \operatorname{Iam} 1^{\prime}\right]=0 \quad \operatorname{Pr}\left[\mathrm{RR}_{(\varepsilon, \delta)}(1)={ }^{\prime} \operatorname{Iam1^{\prime }}\right]=\delta$
- Post-processing preserves differential privacy
\Rightarrow To analyze the concurrent composition of arbitrary pure interactive DP mechanisms, it suffices to analyze the composition of randomized responses of mechanisms, it suffices to analyze the composition of randomized responses of
the same parameters (analogue to the proof strategy in [KOV15] and [MV16]).
- Therefore, the optimal bound for concurrent composition of pure interactive DP is the same as the optimal bound for composing non-interactive counterpart.

Future Work

- We empirically test whether the Optimal Composition Theorems can be extended to the concurrent composition of approximate DP for 3-message interactive mechanisms with 1 -bit message. In all our trials, we find a feasible interactive pos processing algorithm
- We therefore conjecture that the concurrent composition of interactive DP mechanisms may still have the same bound as the composition for non-interactive DP.

